Data Science & Machine Learning

12 Courses -4.90$ Price

You will get all these 12 courses for just 4.90$

2244 Files  |  161 Folders  |  47.1 GB total space

          19 Files  |  05 Folders  |  390 MB total space

  1. Introduction to the Course
  2. A Wider View
  3. Business uses of ChatGPT
  4. Wrap Up

           1116 Files  |  46 Folders  |  9.20 GB total space

  1. Part 1 Introduction
  2. The Field of Data Science – The Various Data Science Disciplines
  3. The Field of Data Science – Connecting the Data Science Disciplines
  4. The Field of Data Science – The Benefits of Each Discipline
  5. The Field of Data Science – Popular Data Science Techniques
  6. The Field of Data Science – Popular Data Science Tools
  7. The Field of Data Science – Careers in Data Science
  8. The Field of Data Science – Debunking Common Misconceptions
  9. Part 2 Statistics
  10. Statistics – Descriptive Statistics
  11. Statistics – Practical Example Descriptive Statistics
  12. Statistics – Inferential Statistics Fundamentals
  13. Statistics – Inferential Statistics Confidence Intervals
  14. Statistics – Practical Example Inferential Statistics
  15. Statistics – Hypothesis Testing
  16. Statistics – Practical Example Hypothesis Testing
  17. Part 3 Introduction to Python
  18. Python – Variables and Data Types
  19. Python – Basic Python Syntax
  20. Python – Other Python Operators
  21. Python – Conditional Statements
  22. Python – Python Functions
  23. Python – Sequences
  24. Python – Iterations
  25. Python – Advanced Python Tools
  26. Part 4 Advanced Statistical Methods in Python
  27. Advanced Statistical Methods – Linear regression
  28. Advanced Statistical Methods – Multiple Linear Regression
  29. Advanced Statistical Methods – Logistic Regression
  30. Advanced Statistical Methods – Cluster Analysis
  31. Advanced Statistical Methods – K-Means Clustering
  32. Advanced Statistical Methods – Other Types of Clustering
  33. Part 5 Mathematics
  34. Part 6 Deep Learning
  35. Deep Learning – Introduction to Neural Networks
  36. Deep Learning – How to Build a Neural Network from Scratch with NumPy
  37. Deep Learning – TensorFlow Introduction
  38. Deep Learning – Digging Deeper into NNs Introducing Deep Neural Networks
  39. Deep Learning – Overfitting
  40. Deep Learning – Initialization
  41. Deep Learning – Digging into Gradient Descent and Learning Rate Schedules
  42. Deep Learning – Preprocessing
  43. Deep Learning – Classifying on the MNIST Dataset
  44. Deep Learning – Business Case Example
  45. Deep Learning – Conclusion

            57 Files  |  08 Folders  |  1.50 GB total space

  1. Introduction to the course
  2. Introduction to AutoML
  3. Auto Sklearn Part 1
  4. Auto Sklearn Part2
  5. TPOT Models Part 1
  6. TPOT Models Part 2
  7. Auto Keras Models

           11 Files  |  01 Folders  |  1.33 GB total space

  1. Introduction
  2. Data Science
  3. Artificial Intelligence
  4. Deep Learning
  5. Machine Learning
  6. Data Engineering
  7. Data Analytics
  8. Business Intelligence
  9. Data Visualization
  10. Cluster Analysis

          336 Files  |  21 Folders  |  7.40 GB total space

  1. Introduction
  2. Data Science & Machine Learning Concepts
  3. Python For Data Science
  4. Statistics for Data Science
  5. Probability & Hypothesis Testing
  6. NumPy Data Analysis
  7. Pandas Data Analysis
  8. Python Data Visualization
  9. Machine Learning
  10. Data Loading & Exploration
  11. Data Cleaning
  12. Feature Selecting and Engineering
  13. Linear and Logistic Regression
  14. K Nearest Neighbors
  15. Decision Trees
  16. Ensemble Learning and Random Forests
  17. Support Vector Machines
  18. Kmeans
  19. PCA
  20. Data Science Career

            18 Files  |  01 Folders  |  1.02 GB total space

  1. ML.NET Machine learning introduction
  2. ML.NET introduction
  3. Getting started with ML.NET
  4. Build an ML model for sentiment analysis
  5. Build an ML model for GitHub issue classification
  6. Build an ML model for predicting taxi fares
  7. Build an ML model for movie recommendations
  8. Deep learning with ML.NET Image classification

           164 Files  |  11 Folders  |  2.12 GB total space

  1. Introduction
  2. Core Data Concepts
  3. Visualizing Data
  4. Combinatorics
  5. Probability
  6. Joint Distributions
  7. Data Distributions
  8. The Normal Distribution
  9. Sampling
  10. Hypothesis Testing
  11. Regression

          53 Files  |  17 Folders  |  1.26 GB total space

  1. Introduction
  2. Data Exploration
  3. Data Modeling
  4. Data Modeling
  5. Error Debugging
  6. Predictive Modeling
  7. Report Generation
  8. Explaining model
  9. Explaining Code
  10. Explaining data
  11. Documentation
  12. Time Management
  13. Project Management
  14. Interview preparation
  15. Additional Resources for Learning more about ChatGPT
  16. Conclusion

             44 Files  |  22 Folders  |  5.40 GB total space

  1. Welcome to the course
  2. Setting up R Studio and R crash course
  3. Basics of Statistics
  4. Intorduction to Machine Learning
  5. Data Preprocessing for Regression Analysis
  6. Linear Regression Model
  7. Regression models other than OLS
  8. Introduction to the classification Models
  9. Logistic Regression
  10. Linear Discriminant Analysis
  11. K-Nearest Neighbors
  12. Comparing results from 3 models
  13. Simple Decision Trees
  14. Simple Classification Tree
  15. Ensemble technique 1 – Bagging
  16. Ensemble technique 2 – Random Forest
  17. Ensemble technique 3 – GBM, AdaBoost and XGBoost
  18. Support Vector Machines
  19. Support Vector Classifier
  20. Support Vector Machines
  21. Creating Support Vector Machine Model in R
  22. Congratulations 

          174 Files  |  16 Folders  |  659 MB total space

  1. Defining-data-science-and-what-data-scientists-do
  2. Data-science-topics
  3. Applications-and-careers-in-data-science
  4. Data-literacy-for-data-science-optional

          299 Files  |  80 Folders  |  745 MB total space

  1. open-source-tools-for-data-science
  2. python-for-applied-data-science-ai
  3. sql-data-science
  4. statistics-for-data-science-python

          293 Files  |  26 Folders  |  16.2 GB total space

  1. Introduction to Course
  2. OPTIONAL: Python Crash Course
  3. Machine Learning Pathway Overview
  4. NumPy
  5. Pandas
  6. Matplotlib
  7. Seaborn Data Visualizations
  8. Data Analysis and Visualization Capstone Project Exercise
  9. Machine Learning Concepts Overview
  10. Linear Regression
  11. Feature Engineering and Data Preparation
  12. Cross Validation Grid Search and the Linear Regression Project
  13. Logistic Regression
  14. KNN K Nearest Neighbors
  15. Support Vector Machines
  16. Tree Based Methods Decision Tree Learning
  17. Random Forests
  18. Boosting Methods
  19. Supervised Learning Capstone Project Cohort Analysis and Tree Based Methods
  20. Naive Bayes Classification and Natural Language Processing Supervised Learning
  21. Unsupervised Learning
  22. KMeans Clustering
  23. Hierarchical Clustering
  24. DBSCAN Densitybased spatial clustering of applications with noise
  25. PCA Principal Component Analysis and Manifold Learning
  26. Model Deployment
Shopping Basket